MID-SEMSTER EXAMINATION II SEMESTER, 2009-2010

B. MATH II YEAR ANALYSIS IV

Time Limit: 2hrs

Max Marks: 40

1. Let (X, d) be a metric space such that for any two points x and y there is a continuous map $f : [0, 1] \to X$ with f(0) = x and f(1) = y. Prove that (X, d) is connected. Do not assume connectedness of any particular space. [8]

2. Prove or disprove:

a) An open ball in a metric space is necessarily connected.

b) An open ball in a normed vector space is necessarily connected. [6]

3. Let X be the space of all sequences of real numbers with the metric $d(\{a_n\}, \{b_n\}) = \sum_{n=1}^{\infty} \frac{|a_n - b_n|}{2^n [1 + |a_n - b_n|]}$. Prove that the set $\{\{a_n\} : |a_n| \le n \forall n\}$ is compact. [8]

4. Let
$$\{f_n\}$$
 be any sequence in $C[0,1]$ and $g_n(x) = \int_0^x \tan^{-1}(f_n(t))dt$ Show

that $\{g_n\}$ has a subsequence that converges in C[0,1] with the usual uniform metric. [8]

5. Let $Lip(\alpha) = \{f \in C[0,1] : |f(x) - f(y)| \le C |x - y|^{\alpha} \forall x, y\}$ where $\alpha > 0$. If $\alpha > 1$ prove that $Lip(\alpha)$ is the space of constant functions. Prove that there is a function in $Lip(\frac{1}{2}) \setminus Lip(1)$. [10]